NAME

Study Guide and Intervention 9 - 3

Transformations of Quadratic Functions

Translations A **translation** is a change in the position of a figure either up, down. left, right, or diagonal. Adding or subtracting constants in the equations of functions translates the graphs of the functions.

The graph of $g(\mathbf{x}) = \mathbf{x}^2 + \mathbf{k}$ translates the graph of $f(\mathbf{x}) = x^2$ vertically. If $\mathbf{k} > 0$, the graph of $f(\mathbf{x}) = \mathbf{x}^2$ is translated \mathbf{k} units up. If $\mathbf{k} < 0$, the graph of $f(\mathbf{x}) = \mathbf{x}^2$ is translated $|\mathbf{k}|$ units down.

The graph of $g(\mathbf{x}) = (\mathbf{x} - \mathbf{h})^2$ is the graph of $f(\mathbf{x}) = \mathbf{x}^2$ translated horizontally.

If h > 0, the graph of $f(\mathbf{x}) = \mathbf{x}^2$ is translated **h** units to the right.

If h < 0, the graph of $f(\mathbf{x}) = \mathbf{x}^2$ is translated $|\mathbf{h}|$ units to the left.

Example Describe how the graph of each function is related to the graph of $f(x) = x^2.$

a. $g(x) = x^2 + 4$

The value of k is 4, and 4 > 0. Therefore, the graph of $g(x) = x^2 + 4$ is a translation of the graph of $f(x) = x^2$ up 4 units.

b. $g(x) = (x + 3)^2$

The value of *h* is -3, and -3 < 0. Thus, the graph of $g(x) = (x + 3)^2$ is a translation of the graph of $f(x) = x^2$ to the left 3 units.

Exercises

Describe how the graph of each function is related to the graph of $f(x) = x^2$.

$$1.g(x) = x^2 + 1$$

2. $g(x) = (x - 6)^2$

Translation of $f(x) = x^2$ up 1 unit.

4. $g(x) = 20 + x^2$

Translation of $f(x) = x^2$ up 20 units.

7. $g(x) = x^2 + \frac{8}{9}$

Translation of $f(x) = x^2 \operatorname{up} \frac{8}{9} \operatorname{unit.}$ Translation of $f(x) = x^2$ to the right 6 units.

5.
$$g(x) = (-2 + x)^2$$

Translation of $f(x) = x^2$ to the right 2 units.

8. $g(x) = x^2 - 0.3$

Translation of $f(x) = x^2$ down 0.3 unit. **3.** $g(x) = (x + 1)^2$

Translation of $f(x) = x^2$ to the left 1 unit.

6.
$$g(x) = -\frac{1}{2} + x^2$$

Translation of $f(x) = x^2 \operatorname{down} \frac{1}{2}$ unit.

9.
$$g(x) = (x + 4)^2$$

Translation of $f(x) = x^2$ to the left 4 units.

Study Guide and Intervention (continued) 9 - 3

Transformations of Quadratic Functions

Dilations and Reflections A **dilation** is a transformation that makes the graph narrower or wider than the parent graph. A **reflection** flips a figure over the *x*- or *y*-axis.

The graph of $f(\mathbf{x}) = \mathbf{a}\mathbf{x}^2$ stretches or compresses the graph of $f(\mathbf{x}) = \mathbf{x}^2$. If $|\mathbf{a}| > 1$, the graph of $f(\mathbf{x}) = \mathbf{x}^2$ is stretched vertically. If $0 < |\mathbf{a}| < 1$, the graph of $f(\mathbf{x}) = \mathbf{x}^2$ is compressed vertically. 0 < a < 1 x ło The graph of the function $-f(\mathbf{x})$ flips the graph of $f(\mathbf{x}) = \mathbf{x}^2$ across the x-axis. $f(x) = x^2$ The graph of the function f(-x) flips the graph of $f(x) = x^2$ across the y-axis. X

Example Describe how the graph of each function is related to the graph of $f(x) = x^2.$

a. $g(x) = 2x^2$

The function can be written as $f(x) = ax^2$ where a = 2. Because |a| > 1, the graph of

 $y = 2x^2$ is the graph of $y = x^2$ that is stretched vertically.

b. $g(x) =$	$-\frac{1}{2}x^2 -$	3
--------------------	---------------------	---

The negative sign causes a reflection across the *x*-axis. Then a dilation occurs

in which $a = \frac{1}{2}$ and a translation in which k = -3. So the graph of $g(x) = -\frac{1}{2}x^2 - 3$ is reflected across the x-axis, dilated wider than the graph of $f(x) = x^2$, and translated down 3 units.

3.

Exercises

Describe how the graph of each function is related to the graph of $f(x) = x^2$.

 $1.g(x) = -5x^2$

2. $g(x) = -(x + 1)^2$

Compression of $f(x) = x^2$ narrower than the graph of $f(x) = x^2$ reflected over the x-axis.

Translation of $f(x) = x^2$ to the left 1 unit and reflected over the x-axis.

$$g(x) = -\frac{1}{4}x^2 - 1$$

Dilation of $f(x) = x^2$ wider than the graph of $f(x) = x^2$ reflected over the x-axis translated down 1 unit.