\qquad
\qquad
\qquad

9-3 Study Guide and Intervention

Transformations of Quadratic Functions

Translations A translation is a change in the position of a figure either up, down, left, right, or diagonal. Adding or subtracting constants in the equations of functions translates the graphs of the functions.

> The graph of $\boldsymbol{g}(\mathbf{x})=\mathbf{x}^{2}+\boldsymbol{k}$ translates the graph of $\boldsymbol{f}(\mathbf{x})=x^{2}$ vertically.
> If $\boldsymbol{k}>0$, the graph of $\boldsymbol{f}(\mathbf{x})=\mathbf{x}^{2}$ is translated \boldsymbol{k} units up.
> If $\boldsymbol{k}<0$, the graph of $\boldsymbol{f}(\mathbf{x})=\mathbf{x}^{2}$ is translated $|\boldsymbol{k}|$ units down.

The graph of $\mathbf{g}(\mathbf{x})=(\mathbf{x}-\boldsymbol{h})^{2}$ is the graph of $\boldsymbol{f}(\mathbf{x})=\mathbf{x}^{2}$ translated horizontally.
If $\boldsymbol{h}>0$, the graph of $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{x}^{2}$ is translated \boldsymbol{h} units to the right.
If $\boldsymbol{h}<0$, the graph of $\boldsymbol{f}(\mathbf{x})=\mathbf{x}^{2}$ is translated $|\boldsymbol{h}|$ units to the left.

Example Describe how the graph of each function is related to the graph of $f(x)=x^{2}$.
a. $g(x)=x^{2}+4$

The value of k is 4 , and $4>0$. Therefore, the graph of $g(x)=x^{2}+4$ is a translation of the graph of $f(x)=x^{2}$ up 4 units.

b. $g(x)=(x+3)^{2}$

The value of h is -3 , and $-3<0$. Thus, the graph of $g(x)=(x+3)^{2}$ is a translation of the graph of $f(x)=x^{2}$ to the left 3 units.

Exercises

Describe how the graph of each function is related to the graph of $f(x)=x^{2}$.

1. $g(x)=x^{2}+1$

Translation of
 $f(x)=x^{2}$ up 1 unit.

4. $g(x)=20+x^{2}$

Translation of $f(x)=x^{2}$ up 20 units.
7. $g(x)=x^{2}+\frac{8}{9}$

Translation of
$f(x)=x^{2}$ up $\frac{8}{9}$ unit.
2. $g(x)=(x-6)^{2}$

Translation of $f(x)=x^{2}$ to the right 6 units.
5. $g(x)=(-2+x)^{2}$

Translation of $f(x)=x^{2}$ to the right 2 units.
8. $g(x)=x^{2}-0.3$

Translation of
$f(x)=x^{2}$ down 0.3 unit.
3. $g(x)=(x+1)^{2}$

Translation of $f(x)=\mathbf{x}^{2}$ to the left 1 unit.
6. $g(x)=-\frac{1}{2}+x^{2}$

Translation of $f(x)=x^{2}$ down $\frac{1}{2}$ unit.
9. $g(x)=(x+4)^{2}$

Translation of $f(x)=x^{2}$ to the left 4 units.
\qquad
\qquad

9-3 Study Guide and Intervention (continued)

Transformations of Quadratic Functions

Dilations and Reflections A dilation is a transformation that makes the graph narrower or wider than the parent graph. A reflection flips a figure over the x - or y-axis.

The graph of $\boldsymbol{f}(\mathbf{x})=\mathbf{a} \mathbf{x}^{2}$ stretches or compresses the graph of $\boldsymbol{f}(\mathbf{x})=\mathbf{x}^{2}$.
If $|a|>1$, the graph of $f(x)=x^{2}$ is stretched vertically.
If $0<|a|<1$, the graph of $f(x)=x^{2}$ is compressed vertically.

Example Describe how the graph of each function is related to the graph of $f(x)=x^{2}$.
a. $g(x)=2 x^{2}$

The function can be written as $f(x)=a x^{2}$ where $a=2$. Because $|a|>1$, the graph of $y=2 x^{2}$ is the graph of $y=x^{2}$ that is stretched vertically.

b. $g(x)=-\frac{1}{2} x^{2}-3$

The negative sign causes a reflection across the x-axis. Then a dilation occurs in which $a=\frac{1}{2}$ and a translation in which $k=-3$. So the graph of $g(x)=-\frac{1}{2} x^{2}-3$ is reflected across the x-axis, dilated wider than the graph of
 $f(x)=x^{2}$, and translated down 3 units.

Exercises

Describe how the graph of each function is related to the graph of $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{x}^{2}$.

1. $g(x)=-5 x^{2}$

Compression of
$f(x)=x^{2}$ narrower than
the graph of $f(x)=x^{2}$ reflected over the x -axis.
2. $g(x)=-(x+1)^{2}$

Translation of $f(x)=x^{2}$ to the left 1 unit and reflected over the x-axis.
3. $g(x)=-\frac{1}{4} x^{2}-1$

Dilation of $f(x)=x^{2}$ wider than the graph of $f(x)=x^{2}$ reflected over the x-axis translated down 1 unit.

