Name:_____

3)

4) _____

6) _____

Calculus Practice Final 2017

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Express the limit as a definite integral.

1)
$$\lim_{n \to \infty} \sum_{k=1}^{n} (3 c_k^2 - 6c_k + 16) \Delta x_k, [-9, 2]$$
 1) _____

Use areas to evaluate the integral.

2)
$$\int_{a}^{b} 8x \, dx$$
, $0 < a < b$ 2) _____

Find the average value over the given interval.

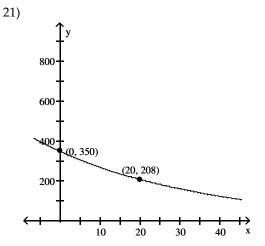
3) y = 6x + 1; [1, 8]

Find dy/dx.

4)
$$\int_{\pi/4}^{\cot x} \csc^2 t \, dt$$

5)
$$\int_{0}^{x} \sqrt{4t+7} \, dt$$
 5) _

Solve the initial value problem explicitly.


6)
$$\frac{du}{dx} = 10x^9 - 4x^3 + 5$$
 and $u = 2$ when $x = 1$

Solve the initial value problem using the Fundamental Theorem. Your answer will contain a definite integral.

7) $\frac{dy}{dx} = \cos(x^2)$ and $y = 8$ when $x = 3$	7)
Solve the initial value problem. 8) $\frac{dy}{dx} = x \sin 3x$ and $y = 6$ when $x = 0$	8)
 Solve the problem. 9) The decay equation for a radioactive substance is known to be y = y₀e^{-0.031t}, with t in days. About how long will it take for the amount of substance to decay to 54% of its original value? 	9)
Evaluate the integral. 10) $\int \frac{2x + 23}{x^2 + 11x + 28} dx$	10)

11)
$$\int \frac{x^2 - 9}{x^2 - 36} dx$$
11)12) $\int \frac{x^4}{x^2 - 9} dx$ 12)Solve the problem.13) A car moving with an initial velocity of 3 mph accelerates at the rate of $a(t) = 2.1t$ mph per13)13) A car moving with an initial velocity of 9 mph accelerates at the rate of $a(t) = 2.1t$ mph per13)14) A car moving with an initial velocity of 9 mph accelerates at the rate of $a(t) = 2.6t$ mph per14)14) A car moving with an initial velocity of 9 mph accelerates at the rate of $a(t) = 2.6t$ mph per14)15) Find the area enclosed by the given curves.15)15)15) Find the area of the region in the first quadrant bounded on the left by the y-axis, below by15)15) find the area of the region in the first quadrant bounded on the left by the y-axis, below by15)16) $y = \sqrt{2x}$, $y = 2, x = 0$ 16)17) The region bounded by revolving the region bounded by the given lines and curves about the x-axis.16) $y = \sqrt{2x}$, $y = 2, x = 0$ 17) The region bounded above by the line $y = 4$, below by the curve $y = 4 - x^2$, and on the right 17)17)18) The region enclosed by $x = \frac{y^2}{5}$, $x = 0$, $y = -5$, $y = 5$ 18)19) $x = \frac{2}{3}(y - 1)^{3/2}$ from $y = 1$ to $y = 4$ 19)20) $y = \int_{0}^{x} \sqrt{4 \sin^2 t - 1} dt$, $0 \le x \le \frac{\pi}{2}$ 20)

Find the exponential function $y = y_0 e^{kt}$ whose graph passes through the two given points.

Solve the problem.

22) Suppose that the accompanying table shows the velocity of a car every second for 8 seconds. Use the Trapezoidal Rule to approximate the distance traveled by the car in the 8 seconds.

22) ____

21) _____

Time (sec)	Velocity (ft/sec)
0	19
1	20
2	21
3	23
4	22
5	24
6	21
7	19
8	20
	1

23) A particle moves with velocity v(t) = 2t + 3 find the distance traveled between t = 0 and t = 23)
2.

Evaluate the integral.

24) $\int (\sqrt{t} - \sqrt{t}) dt$	24)
-------------------------------------	-----

Verify that $\int f(u) du \neq \int$	$\int f(\mathbf{u}) d\mathbf{x}$.	
25) $f(u) = \sqrt{u}$ and u	$=x^{4}(x>0).$	25)

Answer Key Testname: CALCULUS PRACTICE FINAL

1) $\int_{-9}^{2} (3x^2 - 6x + 16) dx$ 2) $4(b^2 - a^2)$ 3) 28 4) $-\csc^2 x \csc^2 (\cot x)$ 5) $\sqrt{4x + 7}$ 6) $u = x^{10} - x^4 + 5x - 3$ 7) $y = \int_{0}^{x} \cos(t^2) dt + 8$ 8) $y = -\frac{x\cos 3x}{3} + \frac{\sin 3x}{9} + 6$ 9) 19.9 days 10) $\ln \left| \frac{(x+4)^5}{(x+7)^3} \right| + C$ 11) $x + \frac{9}{4} \ln \left| \frac{x-6}{x+6} \right| + C$ 12) $\frac{x^3}{3} + 9x + \frac{27}{2} \ln \left| \frac{x-3}{x+3} \right| + C$ 13) 88.05 mph 14) 0.082 mi $15)\frac{73}{6}$ 16) 4π $17)\frac{32}{5}\pi$ 18) 50π 19) $\frac{14}{3}$ 20) 2 21) $y = 350e^{-0.026t}$ 22) 169.5 feet 23) 10 24) $\frac{2}{2}t^{3/2} - \frac{6}{7}t^{7/6} + C$ 25) $\int f(u) du = \int \sqrt{u} du = \frac{2}{3}u^{3/2} + C = \frac{2}{3}(x^4)^{3/2} + C = \frac{2}{3}x^6 + C$ $f(u) = \sqrt{u} = \sqrt{x^4} = x^2.$ $\int f(u) \, dx = \int x^2 \, dx = \frac{1}{3} x^3 + C$ So $\int f(u) du \neq \int f(u) dx$