Graphing Exponential Functions

Graph each function. State the domain and range. 11-16.

11.
$$f(x) = 3^x$$

12.
$$f(x) = -5(2)^x$$
 See margin.

13.
$$f(x) = 3(4)^x - 6$$

14.
$$f(x) = 3^{2x} + 5$$

15.
$$f(x) = 3\left(\frac{1}{4}\right)^{x+3}$$

13.
$$f(x) = 3(4)^{x} - 6$$
 14. $f(x) = 3^{2x} + 5$ **15.** $f(x) = 3\left(\frac{1}{4}\right)^{x+3} - 1$ **16.** $f(x) = \frac{3}{5}\left(\frac{2}{3}\right)^{x-2} + 3$

- 17. POPULATION A city with a population of 120,000 decreases at a rate of 3% annually.
 - **a.** Write the function that represents this situation. $f(x) = 120,000(0.97)^x$ **b.** What will the population be in 10 years?

about 88,491

Example 1

Graph $f(x) = -2(3)^x + 1$. State the domain and range.

The domain is all real numbers, and the range is all real numbers less than 1.

D = {all real numbers}
R = {
$$f(x) | f(x) > 5$$
}

D = {all real numbers} $R = \{f(x) \mid f(x) > -1\}$

D = {all real numbers} $R = \{f(x) \mid f(x) > 3\}$

7_9 Solving Exponential Equations and Inequalities

Solve each equation or inequality. 22. $x > -\frac{2}{3}$ 18. $16^x = \frac{1}{64} - \frac{3}{2}$ 19. $3^{4x} = 9^{3x+7} - 7$ 20. $64^{3n} = 8^{2n-3} - \frac{3}{4}$ 21. $8^{3-3y} = 256^{4y} \frac{9}{41}$ 22. $9^{x-2} > \left(\frac{1}{81}\right)^{x+2}$ 23. $27^{3x} \le 9^{2x-1} \quad x \le -\frac{2}{5}$

18.
$$16^x = \frac{1}{64} - \frac{3}{2}$$

19.
$$3^{4x} = 9^{3x+7} - 7$$

20.
$$64^{3n} = 8^{2n-3} - \frac{3}{4}$$

21.
$$8^{3-3y} = 256^{4y} \frac{9}{41}$$

22.
$$9^{x-2} > \left(\frac{1}{81}\right)^{x+2}$$

23.
$$27^{3x} \le 9^{2x-1}$$
 $x \le -\frac{2}{5}$

- 24. BACTERIA A bacteria population started with 5000 bacteria. After 8 hours there were 28,000 in the sample.
 - a. Write an exponential function that could be used to model the number of bacteria after x hours if the number of bacteria changes at the same rate.

 $y = 5000(1.240)^x$ b. How many bacteria can be expected in the sample after 32 hours? about 4,880,496

Example 2

Solve $4^{3x} = 32^{x-1}$ for x.

$$4^{3x} = 32^{x-1}$$

Original equation

$$(2^2)^{3x} = (2^5)^{x-1}$$

Rewrite so each side has the same base.

$$2^{6x} = 2^{5x-5}$$

Power of a Power

$$6x = 5x - 5$$

Property of Equality for Exponential

Functions

$$x = -5$$

Subtract 5x from each side.

The solution is -5.

7_? Logarithms and Logarithmic Functions

25. Write $\log_2 \frac{1}{16} = -4$ in exponential form. $2^{-4} = \frac{1}{16}$

26. Write $10^2 = 100$ in logarithmic form. $\log_{10} 100 = 2$

Evaluate each expression.

27.
$$\log_4 256$$
 4 28. $\log_2 \frac{1}{8}$ **-3**

Graph each function. 29, 30. See margin.

29.
$$f(x) = 2 \log_{10} x + 4$$

29.
$$f(x) = 2 \log_{10} x + 4$$
 30. $f(x) = \frac{1}{6} \log_{\frac{1}{3}} (x - 2)$

Example 3

Evaluate log₂ 64.

$$\log_2 64 = y$$
 Let the logarithm equal y.

$$64 = 2^y$$
 Definition of logarithm

$$2^6 = 2^y$$
 $64 = 2^6$

Additional Answers

Solving Logarithmic Equations and Inequalities

Solve each equation or inequality.

31.
$$\log_4 x = \frac{3}{2}$$
 64

31.
$$\log_4 x = \frac{3}{2}$$
 64 32. $\log_2 \frac{1}{64} = x$ **-6**

33.
$$\log_4 x < 3$$
 { $x \mid 0 < x < 64$ }

33.
$$\log_4 x < 3$$
 34. $\log_5 x < -3$ $\{x \mid 0 < x < 64\}$ 35. $\log_9 (3x - 1) = \log_9 (4x)$ $\{x \mid 0 < x < \frac{1}{125}\}$ no solution

35.
$$\log_9 (3x - 1) = \log_9 (4x)$$

36.
$$\log_2 (x^2 - 18) = \log_2 (-3x)$$
 -6

37.
$$\log_3 (3x + 4) \le \log_3 (x - 2)$$
 no solution

38. EARTHQUAKE The magnitude of an earthquake is measured on a logarithmic scale called the Richter scale. The magnitude M is given by $M = \log_{10} x$, where x represents the amplitude of the seismic wave causing ground motion. How many times as great is the amplitude caused by an earthquake with a Richter scale rating of 10 as an aftershock with a Richter scale rating of 7? 1000

Example 4

Solve
$$\log_{27} x < \frac{2}{3}$$
.

$$\log_{27} x < \frac{2}{3}$$

Original inequality

$$x < 27^{\frac{2}{3}}$$

Logarithmic to Exponential Inequality

Simplify.

Example 5

Solve $\log_5 (p^2 - 2) = \log_5 p$.

$$\log_5(p^2-2) = \log_5 p$$

Original equation

$$p^2-2=p$$

Property of Equality

$$p^2-p-2=0$$

Subtract p from each side.

$$(p-2)(p+1)=0$$

Factor.

$$p-2=0$$
 or $p+1=0$ Zero Product Property

$$0 = 2$$

p=2 p=-1 Solve each equation.

The solution is p = 2, since $\log_5 p$ is undefined for p = -1.

7_5 Properties of Logarithms

Use $\log_5 16 \approx 1.7227$ and $\log_5 2 \approx 0.4307$ to approximate the value of each expression.

41.
$$\log_5 4$$
 0.8614 42. $\log_5 \frac{1}{8}$ **-1.2921**

43.
$$\log_5 \frac{1}{2}$$
 -0.4307

Solve each equation. Check your solution.

44.
$$\log_5 x - \log_5 2 = \log_5 15$$
 30

45.
$$3 \log_4 a = \log_4 27$$
 3

46.
$$2 \log_3 x + \log_3 3 = \log_3 36 \ 2\sqrt{3}$$

47.
$$\log_4 n + \log_4 (n-4) = \log_4 5$$
 5

48. SOUND Use the formula $L = 10 \log_{10} R$, where L is the loudness of a sound and R is the sound's relative intensity, to find out how much louder 20 people talking would be than one person talking. Suppose the sound of one person talking has a relative intensity of 80 decibels. 361.6 times

Example 6

Use $\log_5 16 \approx 1.7227$ and $\log_5 2 \approx 0.4307$ to approximate log₅ 32.

$$\log_5 32 = \log_5 (16 \cdot 2)$$
 Replace 32 with 16.
 $= \log_5 16 + \log_5 2$ Product Property
 $\approx 1.7227 + 0.4307$ Use a calculator.
 ≈ 2.1534

Example 7

Solve $\log_3 3x + \log_3 4 = \log_3 36$.

$$\log_3 3x + \log_3 4 = \log_3 36$$
 Original equation $\log_3 3x(4) = \log_3 36$ Product Property

$$3x(4) = 36$$
 Definition of logarithm

$$12x = 36$$
 Multiply.

$$x = 3$$
 Divide each side by 12.

Common Logarithms

Solve each equation or inequality. Round to the nearest ten-thousandth.

49.
$$3^x = 15$$
 $x \approx 2.4650$ **50.** $6^{x^2} = 28$ $x \approx \pm 1.3637$

50.
$$6^{x^2} = 28 x \approx \pm 1.3637$$

51.
$$8^{m+1} = 30 \atop m \approx 0.6356$$

52.
$$12^{r-1} = 7r \ r \approx 4.6102$$

53.
$$3^{5n} > 24$$

 $\{n \mid n > 0.5786\}$

54.
$$5^{x+2} \le 3^x$$
 { $x | x \le -6.3013$ }

55. SAVINGS You deposited \$1000 into an account that pays an annual interest rate r of 5% compounded guarterly.

Use
$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$
.

- a. How long will it take until you have \$1500 in your account? about 8.2 years
- b. How long it will take for your money to double? about 13.9 years

Example 8

Solve
$$5^{3x} > 7^{x+1}$$
.

$$5^{3x} > 7^{x+1}$$

Original inequality

$$\log 5^{3x} > \log 7^{x+1}$$

Property of Inequality

$$3x \log 5 > (x + 1) \log 7$$

Power Property

$$3x \log 5 > x \log 7 + \log 7$$
 Distributive Property

$$3x\log 5 - x\log 7 > \log 7$$

Subtract x log 7.

$$x(3 \log 5 - \log 7) > \log 7$$

Distributive Property

$$x > \frac{\log 7}{3 \log 5 - \log 7}$$

Divide by 3 log 5 - log 7.

Use a calculator.

The solution set is $\{x \mid x > 0.6751\}$.

Base e and Natural Logarithms

Solve each equation or inequality. Round to the nearest ten-thousandth. 56-61. See margin.

56.
$$4e^x - 11 = 17$$

56.
$$4e^x - 11 = 17$$
 57. $2e^{-x} + 1 = 15$

58. In
$$2x = 6$$

59.
$$2 + e^x > 9$$

60.
$$\ln (x+3)^5 < 5$$
 61. $e^{-x} > 18$

61.
$$e^{-x} > 18$$

62. SAVINGS If you deposit \$2000 in an account paying 6.4% interest compounded continuously, how long will it take for your money to triple? Use $A = Pe^{rt}$. about 17.2 years

Example 9

Solve $3e^{5x} + 1 = 10$. Round to the nearest ten-thousandth.

$$3e^{5x} + 1 = 10$$

Original equation

$$3e^{5x} = 9$$

Subtract 1 from each side.

$$e^{5x} = 3$$

Divide each side by 3.

In
$$e^{5x} = \ln 3$$

Property of Equality

$$5x = \ln 3$$

In
$$e^x = x$$

$$x = \frac{\ln 3}{5}$$

Divide each side by 5.

$$x \approx 0.2197$$

Use a calculator.

Additional Answers

59.
$$\{x \mid x > 1.9459\}$$

60.
$$\{x \mid -3 < x < -0.2817\}$$

61.
$$\{x \mid x < -2.8904\}$$

7_ Susing Exponential and Logarithmic Functions

- 63. CARS Abe bought a used car for \$2500. It is expected to depreciate at a rate of 25% per year. What will be the value of the car in 3 years? \$1054.69
- **64. BIOLOGY** For a certain strain of bacteria, k is 0.728 when t is measured in days. Using the formula $y = ae^{kt}$, how long will it take 10 bacteria to increase to 675 bacteria?
- 65. POPULATION The population of a city 20 years ago was 24,330. Since then, the population has increased at a steady rate each year. If the population is currently 55,250, find the annual rate of growth for this city. about 4.1%

Example 10

A certain culture of bacteria will grow from 250 to 2000 bacteria in 1.5 hours. Find the constant k for the growth formula. Use $y = ae^{kt}$.

$$y = ae^{kt}$$
 Exponential Growth Formula

 $2000 = 250e^{k(1.5)}$ Replace y with 2000, a with 250, and t with 1.5.

 $8 = e^{1.5k}$ Divide each side by 250.

 $\ln 8 = \ln e^{1.5k}$ Property of Equality

 $\ln 8 = 1.5k$ Inverse Property

 $\frac{\ln 8}{1.5} = k$ Divide each side by 1.5.

1.3863 $\approx k$ Use a calculator.