Use a table of values to graph each equation. State the domain and range. (Lesson 9-1)

1-4. See Ch. 9 Answer Appendix.

1.
$$y = x^2 + 3x + 1$$

2.
$$y = 2x^2 - 4x + 3$$

3.
$$y = -x^2 - 3x - 3$$

4.
$$y = -3x^2 - x + 1$$

Consider $y = x^2 - 5x + 4$. (Lesson 9-1)

- 5. Write the equation of the axis of symmetry. x = 2.5
- Find the coordinates of the vertex. Is it a maximum or minimum point? (2.5, -2.25); minimum
- 7. Graph the function. See margin.
- **8. SOCCER** A soccer ball is kicked from ground level with an initial upward velocity of 90 feet per second. The equation $h = -16t^2 + 90t$ gives the height h of the ball after t seconds. (Lesson 9-1)
 - a. What is the height of the ball after one second?
 - b. How many seconds will it take for the ball to reach its maximum height? 2.8125 s
 - c. When is the height of the ball 0 feet? What do these points represent in this situation?

15. PARTIES Della's parents are throwing a Sweet 16 party for her. At 10:00, a ball will slide 25 feet down a pole and light up. A function that models the drop is $h = -t^2 + 5t + 25$, where h is height in feet of the ball after t seconds. How many seconds will it take for the ball to reach the bottom of the pole?

(Lesson 9-2) ≈8.1 s

Describe how the graph of each function is related to the graph of $f(x) = x^2$. (Lesson 9-3)

16.
$$g(x) = x^2 + 3$$
 translated up 3 units

17.
$$h(x) = 2x^2$$
 stretched vertically

18.
$$g(x) = x^2 - 6$$
 translated down 6 units

19.
$$h(x) = \frac{1}{5}x^2$$
 compressed vertically

20.
$$g(x) = -x^2 + 1$$
 reflected over x-axis and translated up 1 unit

21.
$$h(x) = -\frac{5}{8}x^2$$
 reflected over x-axis and compressed vertically

22. MULTIPLE CHOICE Which is an equation for the function shown in the graph? (Lesson 9-3) D

8c. t = 0, t = 5.62Before the ball is kicked, and when the ball hits the ground after the kick.

Mid-Chapter Quiz

1.

х	у
-3	1
-2	-1
-1	-1
0	1
1	5
2	11

	l				4	У,		
		\				/		
		1				⊬		_
_					1			-
			_	L	ø	L		X
						H		_
					,	1		

 $D = \{all \ real \ numbers\}$

$$R = \{y \mid y \ge -1.25\}$$

2.

х	у
-3	33
-2	19
-1	9
0	3
1	1
2	3
3	9

 $D = \{all \ real \ numbers\}$

$$R = \{y \mid y \ge 1\}$$

x	у
-3	-3
-2	-1
-1	-1
0	-3
1	-7
2	-13

 $D = \{all \ real \ numbers\}$

$$R = \{y \mid y \le -0.75\}$$

x	y
-3	-23
-2	-9
-1	-1
0	1
1	-3
2	-13
	-3 -2 -1 0

$$D = \{\text{all real numbers}\}$$

$$R = \left\{ y \mid y \le 1 \frac{1}{12} \right\}$$

maximum height? 2.8125 s

c. When is the height of the ball 0 feet? What do these points represent in this situation?

Solve each equation by graphing. If integral roots cannot be found, estimate the roots to the nearest tenth. (Lesson 9-2)

9.
$$x^2 + 5x + 6 = 0$$
 -3. -2

8c. t = 0, t = 5.625;

10.
$$x^2 + 8 = -6x - 4 - 2$$

Before the ball is kicked, and

11.
$$-x^2 + 3x - 1 = 0$$
 0.4. 2.6

when the ball hits the ground

12.
$$x^2 = 12$$
 -3.5, 3.5

hits the groun after the kick.

- **13. BASEBALL** Juan hits a baseball. The equation $h = -16t^2 + 120t$ models the height h, in feet, of the ball after t seconds. How long is the ball in the air? (Lesson 9-2) **7.5** s
- **14. CONSTRUCTION** Christopher is repairing the roof on a shed. He accidentally dropped a box of nails from a height of 14 feet. This is represented by the equation $h=-16t^2+14$, where h is the height in feet and t is the time in seconds. Describe how the graph is related to $h=t^2$. (Lesson 9-3) **compressed vertically** and shifted up 14 units

582 | Chapter 9 | Mid-Chapter Quiz

22. MULTIPLE CHOICE Which is an equation for the function

shown in the graph? (Lesson 9-3) D

A
$$v = -2x^2$$

B
$$v = 2x^2 + 1$$

C
$$y = x^2 - 1$$

D
$$y = -2x^2 + 1$$

Solve each equation by completing the square. Round to the nearest tenth. (Lesson 9-4)

23.
$$x^2 + 4x + 2 = 0$$
 -3.4, **-0.6**

24.
$$x^2 - 2x - 10 = 0$$
 -2.3, **4.3**

25.
$$2x^2 + 4x - 5 = 7$$
 -3.6. 1.6