
$$12) \int \frac{x^{4}}{x^{2}-9} dx$$

$$x^{2} + 9 + \frac{81}{x^{2}-9}$$

$$x^{2} + 9 + \frac{81}{x^{2}-9} = \begin{cases} x^{2} + 9 + \frac{81}{x^{2}-9} \\ x^{2} + 9 + \frac{81}{x^{2}-9} = \end{cases} = \begin{cases} x^{2} + 9 + \frac{81}{x^{2}-9} \\ x^{2} + 9 + \frac{81}{x^{2}-9} = \end{cases} = \begin{cases} x^{2} + 9 + \frac{81}{x^{2}-9} \\ x^{2} + 9 + \frac{81}{x^{2}-9} = \end{cases} = \begin{cases} x^{2} + 9 + \frac{81}{x^{2}-9} \\ x^{2} + 9 + \frac{81}{x^{2}-9} = \end{cases} = \begin{cases} x^{2} + 9 + \frac{81}{x^{2}-9} \\ x^{2} + 9 + \frac{81}{x^{2}-9} = \end{cases} = \begin{cases} x^{2} + 9 + \frac{81}{x^{2}-9} \\ x^{2} + 9 + \frac{81}{x^{2}-9} = \end{cases} = \begin{cases} x^{2} + 9 + \frac{81}{x^{2}-9} \\ x^{2} + 9 + \frac{81}{x^{2}-9} = \end{cases} = \begin{cases} x^{2} + 9 + \frac{81}{x^{2}-9} \\ x^{2} + 9 + \frac{81}{x^{2}-9} = \end{cases} = \begin{cases} x^{2} + 9 + \frac{81}{x^{2}-9} \\ x^{2} + 9 + \frac{81}{x^{2}-9} = \end{cases} = \begin{cases} x^{2} + 9 + \frac{81}{x^{2}-9} \\ x^{2} + 9 + \frac{81}{x^{2}-9} = \end{cases} = \begin{cases} x^{2} + 9 + \frac{81}{x^{2}-9} \\ x^{2} + 9 + \frac{81}{x^{2}-9} = \end{cases} = \begin{cases} x^{2} + 9 + \frac{81}{x^{2}-9} \\ x^{2} + 9 + \frac{81}{x^{2}-9} = \end{cases} = \begin{cases} x^{2} + 9 + \frac{81}{x^{2}-9} \\ x^{2} + 9 + \frac{81}{x^{2}-9} = \end{cases} = \begin{cases} x^{2} + 9 + \frac{81}{x^{2}-9} \\ x^{2} + 9 + \frac{81}{x^{2}-9} = \end{cases} = \begin{cases} x^{2} + 9 + \frac{81}{x^{2}-9} \\ x^{2} + 9 + \frac{81}{x^{2}-9} = \end{cases} = \begin{cases} x^{2} + 9 + \frac{81}{x^{2}-9} \\ x^{2} + 9 + \frac{81}{x^{2}-9} = \end{cases} = \begin{cases} x^{2} + 9 + \frac{81}{x^{2}-9} \\ x^{2} + 9 + \frac{81}{x^{2}-9} = \end{cases} = \begin{cases} x^{2} + 9 + \frac{81}{x^{2}-9} \\ x^{2} + 9 + \frac{81}{x^{2}-9} = \end{cases} = \begin{cases} x^{2} + 9 + \frac{81}{x^{2}-9} \\ x^{2} + 9 + \frac{81}{x^{2}-9} = \end{cases} = \begin{cases} x^{2} + 9 + \frac{81}{x^{2}-9} \\ x^{2} + 9 + \frac{81}{x^{2}-9} = \end{cases} = \begin{cases} x^{2} + 9 + \frac{81}{x^{2}-9} \\ x^{2} + 9 + \frac{81}{x^{2}-9} = \end{cases} = \begin{cases} x^{2} + 9 + \frac{81}{x^{2}-9} \\ x^{2} + 9 + \frac{81}{x^{2}-9} = \end{cases} = \begin{cases} x^{2} + 9 + \frac{81}{x^{2}-9} \\ x^{2} + 9 + \frac{81}{x^{2}-9} = \end{cases} = \begin{cases} x^{2} + 9 + \frac{81}{x^{2}-9} \\ x^{2} + 9 + \frac{81}{x^{2}-9} = \end{cases} = \begin{cases} x^{2} + 9 + \frac{81}{x^{2}-9} \\ x^{2} + 9 + \frac{81}{x^{2}-9} = \end{cases} = \begin{cases} x^{2} + 9 + \frac{81}{x^{2}-9} \\ x^{2} + 9 + \frac{81}{x^{2}-9} = \end{cases} = \begin{cases} x^{2} + 9 + \frac{81}{x^{2}-9} \\ x^{2} + 9 + \frac{81}{x^{2}-9} = \end{cases} = \begin{cases} x^{2} + 9 + \frac{81}{x^{2}-9} \\ x^{2} + 9 + \frac{81}{x^{2}-9} = \end{cases} = \begin{cases} x^{2} + 9 + \frac{81}{x^{2}-9} \\ x^{2} + 9 + \frac{81}{x^{2}-9} = \end{cases} = \begin{cases} x^{2} + 9 + \frac{81}{x^{2}-9} \\ x^{2} + 9 + \frac{81}{x^{2}-9} = \end{cases} = \begin{cases} x^{2} + 9 + \frac{81}{x^{2}-9} \\ x^{2}$$

- 13) A car moving with an initial velocity of 3 mph accelerates at the rate of a(t) = 2.1t mph per second for 9 seconds. How fast is the car going when the 9 seconds are up?
- 13)
- 14) A car moving with an initial velocity of 9 mph accelerates at the rate of a(t) = 2.6t mph per second for 8 seconds. How far did the car travel during those 8 seconds?

$$v(t) = \int_{0}^{t} a(t) dt + \int_{0}^{t} a(t) dt$$

			8	85.05 + 3	= 88.05
				8	8.05
+		CE			С
МС	7	8	9	÷	Sqrt
MR	4	5	6	×	X ²
MS	1	2	3	-	1/x
M+	0		+	+	=

5 mil.

Find the area enclosed by the given curves.

15) Find the area of the region in the first quadrant bounded on the left by the y-axis, below by the line $y = \frac{1}{2}x$, above left by y = x + 4, and above right by $y = -x^2 + 10$.

$$\begin{cases} (-x^{2}+4)-\frac{1}{3}\times dx + \\ (-x^{2}+40)-\frac{1}{3}\times dx \end{cases}$$