Find the derivative of the given function.

10)
$$y = \tan^{-1} \sqrt{3x}$$

d tun- (cu) = 1+

Find dy/dx.

11)
$$f(x) = -4e^{3x}$$

12)
$$y = 11^{-x}$$

13)
$$y = ln (x - 2)$$

 $y = (3x)^{2}$ $y' = \frac{1}{3}(3x)^{2}$

 $\frac{d}{dx} = \frac{1}{1+3x}$

 $\left(\frac{3}{2(3\times)^2}\right)$

function. $\frac{d}{dx} \left(e^{x} \right) = e^{x} \cdot \underline{u}$ $u = 3 \times u' = 3$

$$u = 3 \times u' = 3$$

$$F'(x) = -4(e^{3x}).3$$

$$= -12.e^{3x}$$

$$\frac{d}{dx} \left[a^{u} \right] = \frac{a^{u} \ln a \cdot u^{10}}{\ln a \cdot u^{10}}$$

$$y' = 11^{-1} |_{N} |_{N} \cdot (-1)$$

se logarithmic differentiation to find dy/dx.

14)
$$y = 12^{9}x$$

ind f'(x) and state the domain of f'(x).

15)
$$f(x) = \log_4 \sqrt{7x + 6}$$

$$\frac{d}{dx} \left(\frac{a^{u}}{a^{u}} \right) = \frac{a^{u} \cdot \ln a \cdot u}{u = 9}$$

Solve	the	probl	lem.
DUIVE	uic	PIOU	CIII.

16) Suppose that the amount in grams of a radioactive substance present at time t (in years) is given by $A(t) = 160e^{-.70t}$. Find the rate of decay of the quantity present at the time when t = 4

16) _____

- 16) Suppose that the amount in grams of a radioactive substance present at time t (in years) is given by $A(t) = 160e^{-.70t}$. Find the rate of decay of the quantity present at the time when t
- 16) _____

