Chapter 3 Practice Test (continued)

A printing company sells small packages of personalized stationery for \$7 each, medium packages for \$12 each, and large packages for \$15 each. Yesterday, the company sold 9 packages of stationery, collecting a total of \$86. Three times as many medium packages were sold as large packages.

- 11. Let s represent the number of small packages, m the number of medium packages, and ℓ , the number of large packages. Write a system of three equations that represents the number of packages sold.
- 12. Find the number of each size package sold.

For Questions 13-16, use the matrices to find the following.

$$P = \begin{bmatrix} 4 & 1 \\ 2 & 0 \end{bmatrix}$$

$$Q = \begin{bmatrix} 1 & 6 \\ 0 & 2 \end{bmatrix}$$

$$R = \begin{vmatrix} 0 & \frac{1}{2} \\ 1 & -2 \end{vmatrix}$$

$$P = \begin{bmatrix} 4 & 1 \\ 2 & 0 \end{bmatrix}$$
 $Q = \begin{bmatrix} 1 & 6 \\ 0 & 2 \end{bmatrix}$ $R = \begin{bmatrix} 0 & \frac{1}{2} \\ 1 & -2 \end{bmatrix}$ $S = \begin{bmatrix} 6 & -4 & 9 \\ 3 & -1 & -5 \end{bmatrix}$

13. the first row of 2P + 2R

14. the first row of SP

15. the inverse of matrix *R*

$$\mathbf{A} P$$

$$\mathbf{B} Q$$

$$\mathbf{C} T$$

16. the determinant of *Q*

$$H_2$$

17. Evaluate 3 1 2 using diagonals. 1 - 25

$$\mathbf{D} - 1$$

18. Cramer's Rule is used to solve the system of equations 2m + 3n = 11 and 3m - 5n = 6. Which determinant represents the numerator for *m*? $\mathbf{F} \mid_{6}^{11} \mid_{3}^{2} \mid_{6}^{2} \mid_{3}^{3} \mid_{-5}^{3} \mid_{6}^{2} \mid_{3}^{11} \mid_{6}^{3} \mid_{-5}^{11} \mid_{6}^{3} \mid_{6}^{3}$

$$\mathbf{F} \mid_{6}^{11} \mid_{3}^{2}$$

$$\mathbf{G} \Big|_{3}^{2} \Big|_{-5}^{3}$$

$$\mathbf{H} \Big|_{3}^{2} \frac{11}{6} \Big|$$

$$J \Big|_{6}^{11} \quad \frac{3}{-5}$$

19. Which product would be used to solve the matrix equation $\begin{bmatrix} 4 & 6 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} m \\ n \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \end{bmatrix}$ by using inverse matrices?

$$A \begin{vmatrix} 4 & 6 \\ 0 & 1 \end{vmatrix} \cdot \begin{vmatrix} 4 \\ 0 \end{vmatrix}$$

$$B_{\frac{1}{4}} \begin{vmatrix} 1 & -6 \\ 0 & 4 \end{vmatrix} \cdot \begin{vmatrix} 4 \\ 0 \end{vmatrix}$$

$$C_{\frac{1}{4}} \begin{vmatrix} 4 & 6 \\ 0 & 1 \end{vmatrix} \cdot \begin{vmatrix} 4 \\ 0 \end{vmatrix}$$

$$\mathbf{A} \mid_{0}^{4} \mid_{1}^{6} \mid \cdot \mid_{0}^{4} \mid \qquad \mathbf{B} \mid_{4}^{1} \mid_{0}^{1} \mid_{4}^{-6} \mid_{0}^{4} \mid_{0}^{4} \mid \qquad \mathbf{C} \mid_{4}^{1} \mid_{0}^{4} \mid_{0}^{4} \mid_{1}^{4} \mid_{0}^{4} \mid_{0}^$$

Bonus Find the value of $\begin{bmatrix} 0 & 1 & 0 \\ a & b & c \\ c & a & b \end{bmatrix}$

Chapter 3 Practice Test

SCORE

Write the letter for the correct answer in the blank at the right of each question.

1. The system of equations 2y - 8x = -6 and y = 4x - 3 has

A exactly one solution.

C infinitely many solutions.

B no solution.

D exactly two solutions.

Choose the correct description of each system of equations.

F consistent and independent

H consistent and dependent

G inconsistent

2.
$$4x + 2y = -6$$

 $2x - y = 8$

3.
$$3x + y = 3$$

 $x - 2y = 4$

second

4. The first equation of the system is multiplied by 5.

$$6x - 5y = 21$$
$$4x + 7y = 15$$

equation to eliminate the y variable by adding?

 $\mathbf{B} - 7$

By what number would you multiply the second

5. The first equation of the system is multiplied by 4.

By what number would you multiply the second

 \mathbf{D} -2

$$2x + 5y = 16$$

$$8x - 4y = 10$$

F 5

equation to eliminate the x variable by adding? G-1

6. Which system of equations is graphed?

$$\mathbf{A} y - \frac{1}{3} x = 0$$

$$\mathbf{C} y - 3x = 0$$

$$x - y = -2$$

$$x - y = 2$$

$$\mathbf{B} y - 3x = 0$$

$$\mathbf{B} y - 3x = 0$$

$$x - y = -2$$

$$y = 3x$$

$$x - y = 2$$

$$x - y = 2$$

$$\mathbf{D} y - \frac{1}{3} x = 0$$

$$x-y=2$$

7. Which system of inequalities is graphed? **F** v > -1

$$y \ge -1$$

 $y \ge -x+1$

$$\mathbf{H}_{j}$$

For questions 8-10, use the system of inequalities $y \ge 0$, $x \ge 0$, and $y \le -2x + 4$.

$$y \le -x+1$$

$$\begin{cases} y \ge -1 \\ y \ge -x + 1 \end{cases}$$

$$x + 1$$

$$\mathbf{J}y > -1$$

$$y < -x + 1$$

8. Find the coordinates of the vertices of the feasible region.

- $\mathbf{A}(0,0), (-2,0), (0,-4)$
- C(0,0), (4,0), (0,2)
- $\mathbf{B}(0,0),(2,0),(0,4)$
- $\mathbf{D}(0,0), (-4,0), (0,2)$

9. Find the minimum value of f(x, y) = 3x + y for the feasible region.

- G4

10. Find the maximum value of f(x, y) = 3x + y for the feasible region.

- A 2

Substitute!
$$y = 4x - 3$$

$$3x + y = 3$$

$$3x$$

$$|R| = (-2)(0) - (-1)(-1/2) = -1/2$$

$$= \frac{1}{2} |-2 - \frac{1}{2}| = -2 |-2 - \frac{1}{2}| = |2 - \frac{1}{2}|$$

$$= \frac{1}{2} |-1 - \frac{1}{2}| = |2 - \frac{1}{2}| = |2 - \frac{1}{2}|$$