Graph each function. State the domain and range.

1.
$$f(x) = 3^{x-3} + 2$$
 1. 2. See margin.

2.
$$f(x) = 2\left(\frac{3}{4}\right)^{x+1} - 3$$

Solve each equation or inequality. Round to the nearest ten-thousandth if necessary.

3.
$$8^{c+1} = 16^{2c+3}$$
 $c = -\frac{9}{5}$

4.
$$9^{x-2} > \left(\frac{1}{27}\right)^x \left\{ x \mid x > \frac{4}{5} \right\}$$

5.
$$2^{a+3} = 3^{2a-1}$$
 $a \approx 2.1130$

6.
$$\log_2(x^2 - 7) = \log_2 6x \ x = 7$$

7.
$$\log_5 x > 2 \{x \mid x > 25\}$$

8.
$$\log_3 x + \log_3 (x - 3) = \log_3 4 x = 4$$

9.
$$6^{n-1} \le 11^n \{ n \mid n \le -2.9560 \}$$

10.
$$4e^{2x} - 1 = 5$$
 $x \approx 0.2027$

11.
$$\ln (x+2)^2 > 2$$
 $\begin{cases} x \mid x < -4.7183 \text{ or } x > 0.7183. \\ x \neq -2 \end{cases}$

17. MULTIPLE CHOICE What is the value of $\log_4 \frac{1}{64}$?

$$A -3$$

B
$$-\frac{1}{3}$$

$$C_{\frac{1}{3}}$$

- **D** 3
- **18. SAVINGS** You put \$7500 in a savings account paying 3% interest compounded continuously.
 - **a.** Assuming there are no deposits or withdrawals from the account, what is the balance after 5 years? \$8713.76
 - **b.** How long will it take your savings to double?
 - c. In how many years will you have \$10,000 in your account? about 9.6 years

LE CHOICE What is the solution of

 $log_{x} = log_{x} = 82$

Additional Answers (Practice Test)

D = {all real numbers}

$$R = \{f(x) \mid f(x) > 2\}$$

D = {all real numbers}

$$R = \{f(x) \mid f(x) > -3\}$$

11.
$$\ln (x+2)^2 > 2 \begin{cases} x \mid x < -4.7100 \text{ or } x > 0.7100, \\ x \neq -2 \end{cases}$$

Use $\log_5 11 \approx 1.4899$ and $\log_5 2 \approx 0.4307$ to approximate the value of each expression.

- **12.** log₅ 44 **2.3513**
- **13.** $\log_5 \frac{11}{2}$ **1.0592**
- 14. POPULATION The population of a city 10 years ago was 150,000. Since then, the population has increased at a steady rate each year. The population is currently 185,000. a. y = 185,000(1.0212)^x
 - **a.** Write an exponential function that could be used to model the population after *x* years if the population changes at the same rate.
 - b. What will the population be in 25 years? 312,566
- **15.** Write $\log_9 27 = \frac{3}{2}$ in exponential form. $9^{\frac{3}{2}} = 27$
- **16. AGRICULTURE** An equation that models the decline in the number of U.S. farms is $y = 3,962,520(0.98)^x$, where x is the number of years since 1960 and y is the number of farms.
 - $\{b \mid b < 1\}$ **a.** How can you tell that the number is declining?
 - **b.** By what annual rate is the number declining? 2%
 - c. Predict when the number of farms will be less than 1 million. in about 2028

19. MULTIPLE CHOICE What is the solution of

$$\log_4 16 - \log_4 x = \log_4 8$$
? **G**

- F -
- G 2
- H 4
- J 8
- 20. MULTIPLE CHOICE Which function is graphed below?

A
$$y = \log_{10} (x - 5)$$

B
$$y = 5 \log_{10} x$$

$$C y = \log_{10}(x + 5)$$

$$\mathbf{D} \ y = -5 \log_{10} x$$

 $\ln \frac{(6^2)(4^3)}{\left(\frac{1}{3}\right)^5}$ or In 559,872

21. Write $2 \ln 6 + 3 \ln 4 - 5 \ln \left(\frac{1}{3}\right)$ as a single logarithm.