Lesson-by-Lesson Review 🔀

Operations on Functions

Find $[f \circ g](x)$ and $[g \circ f](x)$. 10–15. See margin.

10.
$$f(x) = 2x + \frac{1}{2}$$

$$f(x) = 2x + 1$$

 $g(x) = 4x - 5$

10.
$$f(x) = 2x + 1$$
 $g(x) = 4x - 5$ **11.** $f(x) = x^2 + 1$ $g(x) = x - 7$

12.
$$f(x) = x^2 + 4$$
 13. $f(x) = 4x$

13.
$$f(x) = 4x$$

$$g(x) = -2x + 1$$

$$g(x) = 5x - 1$$

14.
$$f(x) = x^3$$

 $g(x) = x - 1$

15.
$$f(x) = x^2 + 2x - 3$$

 $g(x) = x + 1$

16. MEASUREMENT The formula
$$f = 3y$$
 converts yards y to feet f and $f = \frac{n}{12}$ converts inches n to feet f . Write a composition of functions that converts yards to inches.

Example 1

If $f(x) = x^2 + 3$ and g(x) = 3x - 2, find g[f(x)]and f[g(x)].

$$g[f(x)] = 3(x^2 + 3) - 2$$

Replace
$$f(x)$$
 with $x^2 + 3$.

$$=3x^2+9-2$$

$$=3x^2+7$$

$$f[g(x)] = (3x - 2)^2 + 3$$

Replace
$$g(x)$$
 with $3x - 2$.

$$=9x^2-12x+4+3$$

$$=9x^2-12x+7$$

Additional Answers

10.
$$[f \circ g](x) = 8x - 9$$
 $[g \circ f](x) = 8x - 1$

11.
$$[f \circ g](x) = x^2 - 14x + 50$$

 $[g \circ f](x) = x^2 - 6$

12.
$$[f \circ g](x) = 4x^2 - 4x + 5$$

 $[g \circ f](x) = -2x^2 - 7$

13.
$$[f \circ g](x) = 20x - 4$$
 $[g \circ f](x) = 20x - 1$

14.
$$[f \circ g](x) = x^3 - 3x^2 + 3x - 1$$

 $[g \circ f](x) = x^3 - 1$

15.
$$[f \circ g](x) = x^2 + 4x$$

 $[g \circ f](x) = x^2 + 2x - 2$

 $= 9x - 10x = 9x^{2} - 12x + 7$ $= 9x^{2} - 12x + 7$ $= 9x^{2} - 12x + 7$ = 2(4x - 5) + 1 = 8x - 10 + 1 = 8x - 10 + 1 = 8x - 10 + 1 = 9x - 10 + 1

17.
$$f^{-1}(x) = \frac{x+6}{5}$$

Additional Answers

18.
$$f^{-1}(x) = \frac{x+5}{-3}$$

19.
$$f^{-1}(x) = 2x - 6$$

Inverse Functions and Relations

Find the inverse of each function. Then graph the function and its inverse. 17-22. See margin.

17.
$$f(x) = 5x - 6$$

18.
$$f(x) = -3x - 5$$

19.
$$f(x) = \frac{1}{2}x + 3$$

19.
$$f(x) = \frac{1}{2}x + 3$$
 20. $f(x) = \frac{4x + 1}{5}$ **21.** $f(x) = x^2$ **22.** $f(x) = (2x + 1)^2$

21.
$$f(x) = x^2$$

22.
$$f(x) = (2x + 1)^2$$

23. SHOPPING Samuel bought a computer. The sales tax rate was 6% of the sale price, and he paid \$50 for shipping. Find the sale price if Samuel paid a total of \$1322. \$1200

Use the horizontal line test to determine whether the inverse of each function is also a function. 26, 28, no

24.
$$f(x) = 3x^2$$
 no

25.
$$h(x) = x^3 - 3$$
 yes

26.
$$g(x) = -3x^4 + 2x - 1$$
 27. $g(x) = 4x^3 - 5x$ **no**

27.
$$g(x) = 4x^3 - 5x$$
 no

28.
$$f(x) = -3x^5 + x^2 - 3$$
 29. $h(x) = 4x^4 + 7x$ **no**

9.
$$h(x) = 4x^4 + 7x$$
 10

30. FINANCIAL LITERACY During the last month, Jonathan has made two deposits of \$45, made a deposit of double his original balance, and has withdrawn \$35 five times. His balance is now \$189. Write an equation that models this problem. How much money did Jonathan have in his account at the beginning of the month?

x + 2(45) + 2x - 5(35) = 189; about \$91.33

Example 2

Find the inverse of f(x) = -2x + 7.

Rewrite f(x) as y = -2x + 7. Then interchange the variables and solve for v.

$$x = -2y + 7$$

Interchange the variables.

$$2y = -x + 7$$

Solve for v.

$$y=\frac{-x+7}{2}$$

Divide each side by 2.

$$f^{-1}(x) = \frac{-x+7}{2}$$

Rewrite using function notation.

Example 3

Use the horizontal line test to determine whether the inverse of $f(x) = 2x^3 + 1$ is also a function.

Graph the function.

No horizontal line can be drawn so that it passes through more than one point. The inverse of this function is a function.

20.
$$f^{-1}(x) = \frac{5x-1}{4}$$

21.
$$f^{-1}(x) = \pm \sqrt{x}$$

22.
$$f^{-1}(x) = \frac{-1 \pm \sqrt{x}}{2}$$

Inverse Functions and Relations

Find the inverse of each function. Then graph the function and its inverse. 17-22. See margin.

17.
$$f(x) = 5x - 6$$

18.
$$f(x) = -3x - 5$$

19.
$$f(x) = \frac{1}{2}x + 3$$

19.
$$f(x) = \frac{1}{2}x + 3$$
 20. $f(x) = \frac{4x + 1}{5}$

21.
$$f(x) = x$$

21.
$$f(x) = x^2$$
 22. $f(x) = (2x + 1)^2$

23. SHOPPING Samuel bought a computer. The sales tax rate was 6% of the sale price, and he paid \$50 for shipping. Find the sale price if Samuel paid a total of \$1322. \$1200

Use the horizontal line test to determine whether the inverse of each function is also a function. 26, 28, no

24.
$$f(x) = 3x^2$$
 no

25.
$$h(x) = x^3 - 3$$
 yes

26.
$$g(x) = -3x^4 + 2x - 1$$
 27. $g(x) = 4x^3 - 5x$ **no**

27.
$$g(x) = 4x^3 - 5x$$
 no

28.
$$f(x) = -3x^5 + x^2 - 3$$
 29. $h(x) = 4x^4 + 7x$ **no**

30. FINANCIAL LITERACY During the last month. Jonathan has made two deposits of \$45, made a deposit of double his original balance, and has withdrawn \$35 five times. His balance is now \$189. Write an equation that models this problem. How much money did Jonathan have in his account at the beginning of the month?

$$x + 2(45) + 2x - 5(35) = 189$$
; about \$91.33

Example 2

Find the inverse of f(x) = -2x + 7.

Rewrite f(x) as y = -2x + 7. Then interchange the variables and solve for v.

$$x = -2y + 7$$

Interchange the variables.

$$2y = -x + 7$$

Solve for v.

$$y=\frac{-x+7}{2}$$

Divide each side by 2.

$$f^{-1}(x) = \frac{-x+7}{2}$$

Rewrite using function notation.

Example 3

Use the horizontal line test to determine whether the inverse of $f(x) = 2x^3 + 1$ is also a function.

Graph the function.

No horizontal line can be drawn so that it passes through more than one point. The inverse of this function is a function.

× ct)

Additional Answers

31.

$$D = \{x \mid x \ge 0\}; R = \{f(x) \mid f(x) \ge 0\}$$

$$D = \{x \mid x \ge 0\}; R = \{f(x) \mid f(x) \le 0\}$$

33.

$$D = \{x \mid x \ge 7\}; R = \{f(x) \mid f(x) \ge 0\}$$

Square Root Functions and Inequalities

Graph each function. State the domain and range.

31.
$$f(x) = \sqrt{3x}$$
 31–36. See margin.

32.
$$f(x) = -\sqrt{6x}$$

33.
$$f(x) = \sqrt{x-7}$$

34.
$$f(x) = \sqrt{x+5} - 3$$

32.
$$f(x) = -\sqrt{6x}$$

33. $f(x) = \sqrt{x-7}$
34. $f(x) = \sqrt{x+5} - 3$
35. $f(x) = \frac{3}{4}\sqrt{x-1} + 5$

36.
$$f(x) = -\frac{1}{3}\sqrt{x+4} - 1$$

37. GEOMETRY The area of a circle is given by the formula $A = \pi r^2$. What is the radius of a circle with an area of 300 square inches? about 9.8 in.

Graph each inequality. 38-40. See margin.

38.
$$y \ge \sqrt{x} + 3$$

39.
$$y < 2\sqrt{x-5}$$

40.
$$y > -\sqrt{x-1} +$$

Example 4

Graph $f(x) = \sqrt{x+1} - 2$. State the domain and range. Identify the domain.

$$x+1 \ge 0$$

Write the radicand as greater than or equal to 0.

$$x \ge -1$$

Subtract 1 from each side.

Make a table of values for $x \ge -1$ and graph the function.

Х	f(x)
-1	-2
0	-1
1	-0.59
2	-0.27
3	0
4	0.24
5	0.45

The domain is $\{x | x \ge -1\}$, and the range is $\{f(x)|f(x)\geq -2\}.$

$$D = \{x \mid x \ge -5\}; R = \{f(x) \mid f(x) \ge -3\}$$

$$D = \{x \mid x \ge 1\}; R = \{f(x) \mid f(x) \ge 5\}$$

$$D = \{x \mid x \ge -4\}; R = \{f(x) \mid f(x) \le -1\}$$

6-4 nth Roots

Simplify.

42.
$$\sqrt[3]{-125}$$
 -5

43.
$$\sqrt{(-6)^2}$$

41.
$$\pm \sqrt{121}$$
 ± 11 42. $\sqrt[3]{-125}$ -5 43. $\sqrt{(-6)^2}$ 6 44. $\sqrt{-(x+3)^4}$ $i(x+3)^2$

45.
$$\sqrt[6]{(x^2+2)^{18}}$$
 $(x^2+2)^3$ **46.** $\sqrt[3]{27(x+3)^3}$ **3** $(x+3)$

47.
$$\sqrt[4]{a^8b^{12}}$$
 a^2 b^3

47.
$$\sqrt[4]{a^8b^{12}}$$
 $a^2|b^3|$ 48. $\sqrt[5]{243x^{10}y^{25}}$ $3x^2y^5$

49. PHYSICS The velocity v of an object can be defined as $v = \sqrt{\frac{2K}{m}}$, where m is the mass of an object and K is the kinetic energy in joules. Find the velocity in meters per second of an object with a mass of 17 grams and a kinetic energy of 850 joules. 10 m/s

Example 5

Simplify $\sqrt{64x^6}$.

$$\sqrt{64x^6} = \sqrt{(8x^3)^2} \qquad 64x^6 = (8x^3)^2$$

= 8| x³| Simplify.

Use absolute value symbols because x could be negative.

Example 6

Simplify $\sqrt[6]{4096x^{12}y^{24}}$.

$$\sqrt[6]{4096x^{12}y^{24}} = \sqrt[6]{(4x^2y^4)^6}$$

$$= 4x^2y^4$$
Simplify.